Blog

  • HARD DISK DRIVE

    hard disk drive (HDD), hard diskhard drive, or fixed disk[a] is an electro-mechanical data storage device that stores and retrieves digital data using magnetic storage with one or more rigid rapidly rotating platters coated with magnetic material. The platters are paired with magnetic heads, usually arranged on a moving actuator arm, which read and write data to the platter surfaces.[1] Data is accessed in a random-access manner, meaning that individual blocks of data can be stored and retrieved in any order. HDDs are a type of non-volatile storage, retaining stored data when powered off.[2][3][4] Modern HDDs are typically in the form of a small rectangular box.

    Hard disk drives were introduced by IBM in 1956,[5] and were the dominant secondary storage device for general-purpose computers beginning in the early 1960s. HDDs maintained this position into the modern era of servers and personal computers, though personal computing devices produced in large volume, like mobile phones and tablets, rely on flash memory storage devices. More than 224 companies have produced HDDs historically, though after extensive industry consolidation, most units are manufactured by SeagateToshiba, and Western Digital. HDDs dominate the volume of storage produced (exabytes per year) for servers. Though production is growing slowly (by exabytes shipped[6]), sales revenues and unit shipments are declining, because solid-state drives (SSDs) have higher data-transfer rates, higher areal storage density, somewhat better reliability,[7][8] and much lower latency and access times.[9][10][11][12]

    The revenues for SSDs, most of which use NAND flash memory, slightly exceeded those for HDDs in 2018.[13] Flash storage products had more than twice the revenue of hard disk drives as of 2017.[14] Though SSDs have four to nine times higher cost per bit,[15][16] they are replacing HDDs in applications where speed, power consumption, small size, high capacity and durability are important.[11][12] As of 2019, the cost per bit of SSDs is falling, and the price premium over HDDs has narrowed.[16]

    The primary characteristics of an HDD are its capacity and performance. Capacity is specified in unit prefixes corresponding to powers of 1000: a 1-terabyte (TB) drive has a capacity of 1,000 gigabytes, where 1 gigabyte = 1 000 megabytes = 1 000 000 kilobytes (1 million) = 1 000 000 000 bytes (1 billion). Typically, some of an HDD’s capacity is unavailable to the user because it is used by the file system and the computer operating system, and possibly inbuilt redundancy for error correction and recovery. There can be confusion regarding storage capacity since capacities are stated in decimal gigabytes (powers of 1000) by HDD manufacturers, whereas the most commonly used operating systems report capacities in powers of 1024, which results in a smaller number than advertised. Performance is specified as the time required to move the heads to a track or cylinder (average access time), the time it takes for the desired sector to move under the head (average latency, which is a function of the physical rotational speed in revolutions per minute), and finally, the speed at which the data is transmitted (data rate).

    The two most common form factors for modern HDDs are 3.5-inch, for desktop computers, and 2.5-inch, primarily for laptops. HDDs are connected to systems by standard interface cables such as SATA (Serial ATA), USB, SAS (Serial Attached SCSI), or PATA (Parallel ATA) cables.

    History

    [edit]

    Main article: History of hard disk drives

    A partially disassembled IBM 350 hard disk drive (RAMAC)
    Date inventedDecember 24, 1954; 70 years ago[b]
    Invented byIBM team led by Rey Johnson
    ParameterStarted with (1957)Improved toImprovement
    Capacity
    (formatted)
    3.75 megabytes[18]32 terabytes (as of 2024)[19][20]8.5-million-to-one[c]
    Physical volume68 cubic feet (1.9 m3)[d][5]2.1 cubic inches (34 cm3)[21][e]56,000-to-one[f]
    Weight2,000 pounds
    (910 kg)[5]
    2.2 ounces
    (62 g)[21]
    15,000-to-one[g]
    Average access timeapprox. 600 milliseconds[5]2.5 ms to 10 ms; RW RAM dependentabout
    200-to-one[h]
    PriceUS$9,200 per megabyte (1961;[22] US$97,500 in 2022)US$14.4 per terabyte by end of 2022[23]6.8-billion-to-one[i]
    Data density2,000 bits per square inch[24]1.4 terabits per square inch in 2023[25]700-million-to-one[j]
    Average lifespanc. 2000 hrs MTBF[citation needed]c. 2,500,000 hrs (~285 years) MTBF[26]1250-to-one[k]

    1950s–1960s

    [edit]

    The first production IBM hard disk drive, the 350 disk storage, shipped in 1957 as a component of the IBM 305 RAMAC system. It was approximately the size of two large refrigerators and stored five million six-bit characters (3.75 megabytes)[18] on a stack of 52 disks (100 surfaces used).[27] The 350 had a single arm with two read/write heads, one facing up and the other down, that moved both horizontally between a pair of adjacent platters and vertically from one pair of platters to a second set.[28][29][30] Variants of the IBM 350 were the IBM 355IBM 7300 and IBM 1405.

    In 1961, IBM announced, and in 1962 shipped, the IBM 1301 disk storage unit,[31] which superseded the IBM 350 and similar drives. The 1301 consisted of one (for Model 1) or two (for model 2) modules, each containing 25 platters, each platter about 18-inch (3.2 mm) thick and 24 inches (610 mm) in diameter.[32] While the earlier IBM disk drives used only two read/write heads per arm, the 1301 used an array of 48[l] heads (comb), each array moving horizontally as a single unit, one head per surface used. Cylinder-mode read/write operations were supported, and the heads flew about 250 micro-inches (about 6 μm) above the platter surface. Motion of the head array depended upon a binary adder system of hydraulic actuators which assured repeatable positioning. The 1301 cabinet was about the size of three large refrigerators placed side by side, storing the equivalent of about 21 million eight-bit bytes per module. Access time was about a quarter of a second.

    Also in 1962, IBM introduced the model 1311 disk drive, which was about the size of a washing machine and stored two million characters on a removable disk pack. Users could buy additional packs and interchange them as needed, much like reels of magnetic tape. Later models of removable pack drives, from IBM and others, became the norm in most computer installations and reached capacities of 300 megabytes by the early 1980s. Non-removable HDDs were called “fixed disk” drives.

    In 1963, IBM introduced the 1302,[33] with twice the track capacity and twice as many tracks per cylinder as the 1301. The 1302 had one (for Model 1) or two (for Model 2) modules, each containing a separate comb for the first 250 tracks and the last 250 tracks.

    Some high-performance HDDs were manufactured with one head per track, e.g., Burroughs B-475 in 1964, IBM 2305 in 1970, so that no time was lost physically moving the heads to a track and the only latency was the time for the desired block of data to rotate into position under the head.[34] Known as fixed-head or head-per-track disk drives, they were very expensive and are no longer in production.[35]

    1970s

    [edit]

    In 1973, IBM introduced a new type of HDD code-named “Winchester“. Its primary distinguishing feature was that the disk heads were not withdrawn completely from the stack of disk platters when the drive was powered down. Instead, the heads were allowed to “land” on a special area of the disk surface upon spin-down, “taking off” again when the disk was later powered on. This greatly reduced the cost of the head actuator mechanism but precluded removing just the disks from the drive as was done with the disk packs of the day. Instead, the first models of “Winchester technology” drives featured a removable disk module, which included both the disk pack and the head assembly, leaving the actuator motor in the drive upon removal. Later “Winchester” drives abandoned the removable media concept and returned to non-removable platters.

    In 1974, IBM introduced the swinging arm actuator, made feasible because the Winchester recording heads function well when skewed to the recorded tracks. The simple design of the IBM GV (Gulliver) drive,[36] invented at IBM’s UK Hursley Labs, became IBM’s most licensed electro-mechanical invention[37] of all time, the actuator and filtration system being adopted in the 1980s eventually for all HDDs, and still universal nearly 40 years and 10 billion arms later.

    Like the first removable pack drive, the first “Winchester” drives used platters 14 inches (360 mm) in diameter. In 1978, IBM introduced a swing arm drive, the IBM 0680 (Piccolo), with eight-inch platters, exploring the possibility that smaller platters might offer advantages. Other eight-inch drives followed, then 5+14 in (130 mm) drives, sized to replace the contemporary floppy disk drives. The latter were primarily intended for the then fledgling personal computer (PC) market.

    1980s–1990s

    [edit]

    Over time, as recording densities were greatly increased, further reductions in disk diameter to 3.5″ and 2.5″ were found to be optimum. Powerful rare earth magnet materials became affordable during this period and were complementary to the swing arm actuator design to make possible the compact form factors of modern HDDs.

    As the 1980s began, HDDs were a rare and very expensive additional feature in PCs, but by the late 1980s, their cost had been reduced to the point where they were standard on all but the cheapest computers.

    Most HDDs in the early 1980s were sold to PC end users as an external, add-on subsystem. The subsystem was not sold under the drive manufacturer’s name but under the subsystem manufacturer’s name such as Corvus Systems and Tallgrass Technologies, or under the PC system manufacturer’s name such as the Apple ProFile. The IBM PC/XT in 1983 included an internal 10 MB HDD, and soon thereafter, internal HDDs proliferated on personal computers.

    External HDDs remained popular for much longer on the Apple Macintosh. Many Macintosh computers made between 1986 and 1998 featured a SCSI port on the back, making external expansion simple. Older compact Macintosh computers did not have user-accessible hard drive bays (indeed, the Macintosh 128KMacintosh 512K, and Macintosh Plus did not feature a hard drive bay at all), so on those models, external SCSI disks were the only reasonable option for expanding upon any internal storage.

    21st century

    [edit]

    HDD improvements have been driven by increasing areal density, listed in the table above. Applications expanded through the 2000s, from the mainframe computers of the late 1950s to most mass storage applications including computers and consumer applications such as storage of entertainment content.

    In the 2000s and 2010s, NAND began supplanting HDDs in applications requiring portability or high performance. NAND performance is improving faster than HDDs, and applications for HDDs are eroding. In 2018, the largest hard drive had a capacity of 15 TB, while the largest capacity SSD had a capacity of 100 TB.[38] As of 2018, HDDs were forecast to reach 100 TB capacities around 2025,[39] but as of 2019, the expected pace of improvement was pared back to 50 TB by 2026.[40] Smaller form factors, 1.8-inches and below, were discontinued around 2010. The cost of solid-state storage (NAND), represented by Moore’s law, is improving faster than HDDs. NAND has a higher price elasticity of demand than HDDs, and this drives market growth.[41] During the late 2000s and 2010s, the product life cycle of HDDs entered a mature phase, and slowing sales may indicate the onset of the declining phase.[42]

    The 2011 Thailand floods damaged the manufacturing plants and impacted hard disk drive cost adversely between 2011 and 2013.[43]

    In 2019, Western Digital closed its last Malaysian HDD factory due to decreasing demand, to focus on SSD production.[44] All three remaining HDD manufacturers have had decreasing demand for their HDDs since 2014.[45]

    Technology

    [edit]

    Magnetic cross section & frequency modulation encoded binary data

    Magnetic recording

    [edit]

    See also: Magnetic storage

    A modern HDD records data by magnetizing a thin film of ferromagnetic material[m] on both sides of a disk. Sequential changes in the direction of magnetization represent binary data bits. The data is read from the disk by detecting the transitions in magnetization. User data is encoded using an encoding scheme, such as run-length limited encoding,[n] which determines how the data is represented by the magnetic transitions.

    A typical HDD design consists of a spindle that holds flat circular disks, called platters, which hold the recorded data. The platters are made from a non-magnetic material, usually aluminum alloyglass, or ceramic. They are coated with a shallow layer of magnetic material typically 10–20 nm in depth, with an outer layer of carbon for protection.[47][48][49] For reference, a standard piece of copy paper is 0.07–0.18 mm (70,000–180,000 nm)[50] thick.

    Destroyed hard disk, glass platter visible
    Diagram labeling the major components of a computer HDD
    Recording of single magnetisations of bits on a 200 MB HDD-platter (recording made visible using CMOS-MagView)[51]
    Longitudinal recording (standard) & perpendicular recording diagram

    The platters in contemporary HDDs are spun at speeds varying from 4200 rpm in energy-efficient portable devices, to 15,000 rpm for high-performance servers.[52] The first HDDs spun at 1,200 rpm[5] and, for many years, 3,600 rpm was the norm.[53] As of November 2019, the platters in most consumer-grade HDDs spin at 5,400 or 7,200 rpm.

    Information is written to and read from a platter as it rotates past devices called read-and-write heads that are positioned to operate very close to the magnetic surface, with their flying height often in the range of tens of nanometers. The read-and-write head is used to detect and modify the magnetization of the material passing immediately under it.

    In modern drives, there is one head for each magnetic platter surface on the spindle, mounted on a common arm. An actuator arm (or access arm) moves the heads on an arc (roughly radially) across the platters as they spin, allowing each head to access almost the entire surface of the platter as it spins. The arm is moved using a voice coil actuator or, in some older designs, a stepper motor. Early hard disk drives wrote data at some constant bits per second, resulting in all tracks having the same amount of data per track, but modern drives (since the 1990s) use zone bit recording, increasing the write speed from inner to outer zone and thereby storing more data per track in the outer zones.

    In modern drives, the small size of the magnetic regions creates the danger that their magnetic state might be lost because of thermal effects⁠ ⁠— thermally induced magnetic instability which is commonly known as the “superparamagnetic limit“. To counter this, the platters are coated with two parallel magnetic layers, separated by a three-atom layer of the non-magnetic element ruthenium, and the two layers are magnetized in opposite orientation, thus reinforcing each other.[54] Another technology used to overcome thermal effects to allow greater recording densities is perpendicular recording (PMR), first shipped in 2005,[55] and as of 2007, used in certain HDDs.[56][57][58] Perpendicular recording may be accompanied by changes in the manufacturing of the read/write heads to increase the strength of the magnetic field created by the heads.[59]

    In 2004, a higher-density recording media was introduced, consisting of coupled soft and hard magnetic layers. So-called exchange spring media magnetic storage technology, also known as exchange coupled composite media, allows good writability due to the write-assist nature of the soft layer. However, the thermal stability is determined only by the hardest layer and not influenced by the soft layer.[60][61]

    Flux control MAMR (FC-MAMR) allows a hard drive to have increased recording capacity without the need for new hard disk drive platter materials. MAMR hard drives have a microwave-generating spin torque generator (STO) on the read/write heads which allows physically smaller bits to be recorded to the platters, increasing areal density. Normally hard drive recording heads have a pole called a main pole that is used for writing to the platters, and adjacent to this pole is an air gap and a shield. The write coil of the head surrounds the pole. The STO device is placed in the air gap between the pole and the shield to increase the strength of the magnetic field created by the pole; FC-MAMR technically doesn’t use microwaves but uses technology employed in MAMR. The STO has a Field Generation Layer (FGL) and a Spin Injection Layer (SIL), and the FGL produces a magnetic field using spin-polarised electrons originating in the SIL, which is a form of spin torque energy.[62]

    Components

    [edit]

    An HDD with disks and motor hub removed, exposing copper-colored stator coils surrounding a bearing in the center of the spindle motor. The orange stripe along the side of the arm is a thin printed-circuit cable, the spindle bearing is in the center and the actuator is in the upper left.
    Circuit board of a 2.5-inch Samsung hard disk MP0402H

    A typical HDD has two electric motors: a spindle motor that spins the disks and an actuator (motor) that positions the read/write head assembly across the spinning disks. The disk motor has an external rotor attached to the disks; the stator windings are fixed in place. Opposite the actuator at the end of the head support arm is the read-write head; thin printed-circuit cables connect the read-write heads to amplifier electronics mounted at the pivot of the actuator. The head support arm is very light, but also stiff; in modern drives, acceleration at the head reaches 550 g.

    Head stack with an actuator coil on the left and read/write heads on the right
    Close-up of a single read–write head, showing the side facing the platter

    The actuator is a permanent magnet and moving coil motor that swings the heads to the desired position. A metal plate supports a squat neodymium–iron–boron (NIB) high-flux magnet. Beneath this plate is the moving coil, often referred to as the voice coil by analogy to the coil in loudspeakers, which is attached to the actuator hub, and beneath that is a second NIB magnet, mounted on the bottom plate of the motor (some drives have only one magnet).

    The voice coil itself is shaped rather like an arrowhead and is made of doubly coated copper magnet wire. The inner layer is insulation, and the outer is thermoplastic, which bonds the coil together after it is wound on a form, making it self-supporting. The portions of the coil along the two sides of the arrowhead (which point to the center of the actuator bearing) then interact with the magnetic field of the fixed magnet. Current flowing radially outward along one side of the arrowhead and radially inward on the other produces the tangential force. If the magnetic field were uniform, each side would generate opposing forces that would cancel each other out. Therefore, the surface of the magnet is half north pole and half south pole, with the radial dividing line in the middle, causing the two sides of the coil to see opposite magnetic fields and produce forces that add instead of canceling. Currents along the top and bottom of the coil produce radial forces that do not rotate the head.

    The HDD’s electronics controls the movement of the actuator and the rotation of the disk and transfers data to or from a disk controller. Feedback of the drive electronics is accomplished by means of special segments of the disk dedicated to servo feedback. These are either complete concentric circles (in the case of dedicated servo technology) or segments interspersed with real data (in the case of embedded servo, otherwise known as sector servo technology). The servo feedback optimizes the signal-to-noise ratio of the GMR sensors by adjusting the voice coil motor to rotate the arm. A more modern servo system also employs milli or micro actuators to more accurately position the read/write heads.[63] The spinning of the disks uses fluid-bearing spindle motors. Modern disk firmware is capable of scheduling reads and writes efficiently on the platter surfaces and remapping sectors of the media that have failed.

    Error rates and handling

    [edit]

    Modern drives make extensive use of error correction codes (ECCs), particularly Reed–Solomon error correction. These techniques store extra bits, determined by mathematical formulas, for each block of data; the extra bits allow many errors to be corrected invisibly. The extra bits themselves take up space on the HDD, but allow higher recording densities to be employed without causing uncorrectable errors, resulting in much larger storage capacity.[64] For example, a typical 1 TB hard disk with 512-byte sectors provides additional capacity of about 93 GB for the ECC data.[65]

    In the newest drives, as of 2009,[66] low-density parity-check codes (LDPC) were supplanting Reed–Solomon; LDPC codes enable performance close to the Shannon limit and thus provide the highest storage density available.[66][67]

    Typical hard disk drives attempt to “remap” the data in a physical sector that is failing to a spare physical sector provided by the drive’s “spare sector pool” (also called “reserve pool”),[68] while relying on the ECC to recover stored data while the number of errors in a bad sector is still low enough. The S.M.A.R.T (Self-Monitoring, Analysis and Reporting Technology) feature counts the total number of errors in the entire HDD fixed by ECC (although not on all hard drives as the related S.M.A.R.T attributes “Hardware ECC Recovered” and “Soft ECC Correction” are not consistently supported), and the total number of performed sector remappings, as the occurrence of many such errors may predict an HDD failure.

    The “No-ID Format”, developed by IBM in the mid-1990s, contains information about which sectors are bad and where remapped sectors have been located.[69]

    Only a tiny fraction of the detected errors end up as not correctable. Examples of specified uncorrected bit read error rates include:

    • 2013 specifications for enterprise SAS disk drives state the error rate to be one uncorrected bit read error in every 1016 bits read,[70][71]
    • 2018 specifications for consumer SATA hard drives state the error rate to be one uncorrected bit read error in every 1014 bits.[72][73]

    Within a given manufacturers model the uncorrected bit error rate is typically the same regardless of capacity of the drive.[70][71][72][73]

    The worst type of errors are silent data corruptions which are errors undetected by the disk firmware or the host operating system; some of these errors may be caused by hard disk drive malfunctions while others originate elsewhere in the connection between the drive and the host.[74]

    Development

    [edit]

    Leading-edge hard disk drive areal densities from 1956 through 2009 compared to Moore’s law. By 2016, progress had slowed significantly below the extrapolated density trend.[75]

    The rate of areal density advancement was similar to Moore’s law (doubling every two years) through 2010: 60% per year during 1988–1996, 100% during 1996–2003 and 30% during 2003–2010.[76] Speaking in 1997, Gordon Moore called the increase “flabbergasting”,[77] while observing later that growth cannot continue forever.[78] Price improvement decelerated to −12% per year during 2010–2017,[79] as the growth of areal density slowed. The rate of advancement for areal density slowed to 10% per year during 2010–2016,[80] and there was difficulty in migrating from perpendicular recording to newer technologies.[81]

    As bit cell size decreases, more data can be put onto a single drive platter. In 2013, a production desktop 3 TB HDD (with four platters) would have had an areal density of about 500 Gbit/in2 which would have amounted to a bit cell comprising about 18 magnetic grains (11 by 1.6 grains).[82] Since the mid-2000s, areal density progress has been challenged by a superparamagnetic trilemma involving grain size, grain magnetic strength and ability of the head to write.[83] In order to maintain acceptable signal-to-noise, smaller grains are required; smaller grains may self-reverse (electrothermal instability) unless their magnetic strength is increased, but known write head materials are unable to generate a strong enough magnetic field sufficient to write the medium in the increasingly smaller space taken by grains.

    Magnetic storage technologies are being developed to address this trilemma, and compete with flash memory–based solid-state drives (SSDs). In 2013, Seagate introduced shingled magnetic recording (SMR),[84] intended as something of a “stopgap” technology between PMR and Seagate’s intended successor heat-assisted magnetic recording (HAMR). SMR utilizes overlapping tracks for increased data density, at the cost of design complexity and lower data access speeds (particularly write speeds and random access 4k speeds).[85][86]

    By contrast, HGST (now part of Western Digital) focused on developing ways to seal helium-filled drives instead of the usual filtered air. Since turbulence and friction are reduced, higher areal densities can be achieved due to using a smaller track width, and the energy dissipated due to friction is lower as well, resulting in a lower power draw. Furthermore, more platters can be fit into the same enclosure space, although helium gas is notoriously difficult to prevent escaping.[87] Thus, helium drives are completely sealed and do not have a breather port, unlike their air-filled counterparts.

    Other recording technologies are either under research or have been commercially implemented to increase areal density, including Seagate’s heat-assisted magnetic recording (HAMR). HAMR requires a different architecture with redesigned media and read/write heads, new lasers, and new near-field optical transducers.[88] HAMR is expected to ship commercially in late 2024,[89] after technical issues delayed its introduction by more than a decade, from earlier projections as early as 2009.[90][91][92][93] HAMR’s planned successor, bit-patterned recording (BPR),[94] has been removed from the roadmaps of Western Digital and Seagate.[95] Western Digital’s microwave-assisted magnetic recording (MAMR),[96][97] also referred to as energy-assisted magnetic recording (EAMR), was sampled in 2020, with the first EAMR drive, the Ultrastar HC550, shipping in late 2020.[98][99][100] Two-dimensional magnetic recording (TDMR)[82][101] and “current perpendicular to plane” giant magnetoresistance (CPP/GMR) heads have appeared in research papers.[102][103][104]

    Some drives have adopted dual independent actuator arms to increase read/write speeds and compete with SSDs.[105] A 3D-actuated vacuum drive (3DHD) concept[106] and 3D magnetic recording have been proposed.[107]

    Depending upon assumptions on feasibility and timing of these technologies, Seagate forecasts that areal density will grow 20% per year during 2020–2034.[40]

    Capacity

    [edit]

    Two Seagate Barracuda drives from 2003 and 2009, respectively 160 GB and 1 TB. As of 2022, Western Digital offers capacities up to 26 TB.
    mSATA SSD on top of a 2.5-inch hard drive

    The highest-capacity HDDs shipping commercially as of 2025 are 36 TB.[19][failed verification] The capacity of a hard disk drive, as reported by an operating system to the end user, is smaller than the amount stated by the manufacturer for several reasons, e.g. the operating system using some space, use of some space for data redundancy, space use for file system structures. Confusion of decimal prefixes and binary prefixes can also lead to errors.

    Calculation

    [edit]

    Modern hard disk drives appear to their host controller as a contiguous set of logical blocks, and the gross drive capacity is calculated by multiplying the number of blocks by the block size. This information is available from the manufacturer’s product specification, and from the drive itself through use of operating system functions that invoke low-level drive commands.[108][109] Older IBM and compatible drives, e.g. IBM 3390 using the CKD record format, have variable length records; such drive capacity calculations must take into account the characteristics of the records. Some newer DASD simulate CKD, and the same capacity formulae apply.

    The gross capacity of older sector-oriented HDDs is calculated as the product of the number of cylinders per recording zone, the number of bytes per sector (most commonly 512), and the count of zones of the drive.[citation needed] Some modern SATA drives also report cylinder-head-sector (CHS) capacities, but these are not physical parameters because the reported values are constrained by historic operating system interfaces. The C/H/S scheme has been replaced by logical block addressing (LBA), a simple linear addressing scheme that locates blocks by an integer index, which starts at LBA 0 for the first block and increments thereafter.[110] When using the C/H/S method to describe modern large drives, the number of heads is often set to 64, although a typical modern hard disk drive has between one and four platters. In modern HDDs, spare capacity for defect management is not included in the published capacity; however, in many early HDDs, a certain number of sectors were reserved as spares, thereby reducing the capacity available to the operating system. Furthermore, many HDDs store their firmware in a reserved service zone, which is typically not accessible by the user, and is not included in the capacity calculation.

    For RAID subsystems, data integrity and fault-tolerance requirements also reduce the realized capacity. For example, a RAID 1 array has about half the total capacity as a result of data mirroring, while a RAID 5 array with n drives loses 1/n of capacity (which equals to the capacity of a single drive) due to storing parity information. RAID subsystems are multiple drives that appear to be one drive or more drives to the user, but provide fault tolerance. Most RAID vendors use checksums to improve data integrity at the block level. Some vendors design systems using HDDs with sectors of 520 bytes to contain 512 bytes of user data and eight checksum bytes, or by using separate 512-byte sectors for the checksum data.[111]

    Some systems may use hidden partitions for system recovery, reducing the capacity available to the end user without knowledge of special disk partitioning utilities like diskpart in Windows.[112]

    Formatting

    [edit]

    Main article: Disk formatting

    Data is stored on a hard drive in a series of logical blocks. Each block is delimited by markers identifying its start and end, error detecting and correcting information, and space between blocks to allow for minor timing variations. These blocks often contained 512 bytes of usable data, but other sizes have been used. As drive density increased, an initiative known as Advanced Format extended the block size to 4096 bytes of usable data, with a resulting significant reduction in the amount of disk space used for block headers, error-checking data, and spacing.

    The process of initializing these logical blocks on the physical disk platters is called low-level formatting, which is usually performed at the factory and is not normally changed in the field.[113] High-level formatting writes data structures used by the operating system to organize data files on the disk. This includes writing partition and file system structures into selected logical blocks. For example, some of the disk space will be used to hold a directory of disk file names and a list of logical blocks associated with a particular file.

    Examples of partition mapping scheme include Master boot record (MBR) and GUID Partition Table (GPT). Examples of data structures stored on disk to retrieve files include the File Allocation Table (FAT) in the DOS file system and inodes in many UNIX file systems, as well as other operating system data structures (also known as metadata). As a consequence, not all the space on an HDD is available for user files, but this system overhead is usually small compared with user data.

    Units

    [edit]

    See also: Binary prefix § disk drives

    Capacity advertised by manufacturers[o]Capacity expected by some consumers[p]Reported capacity
    Windows[p]macOS ver 10.6+[o]
    With prefixBytesBytesDiff.
    100 GB100,000,000,000107,374,182,4007.37%93.1 GB100 GB
    TB1,000,000,000,0001,099,511,627,7769.95%931 GB1,000 GB, 1,000,000 MB

    In the early days of computing, the total capacity of HDDs was specified in seven to nine decimal digits frequently truncated with the idiom millions.[116][33] By the 1970s, the total capacity of HDDs was given by manufacturers using SI decimal prefixes such as megabytes (1 MB = 1,000,000 bytes), gigabytes (1 GB = 1,000,000,000 bytes) and terabytes (1 TB = 1,000,000,000,000 bytes).[114][117][118][119] However, capacities of memory are usually quoted using a binary interpretation of the prefixes, i.e. using powers of 1024 instead of 1000.

    Software reports hard disk drive or memory capacity in different forms using either decimal or binary prefixes. The Microsoft Windows family of operating systems uses the binary convention when reporting storage capacity, so an HDD offered by its manufacturer as a 1 TB drive is reported by these operating systems as a 931 GB HDD. Mac OS X 10.6 (“Snow Leopard“) uses decimal convention when reporting HDD capacity.[120] The default behavior of the df command-line utility on Linux is to report the HDD capacity as a number of 1024-byte units.[121]

    The difference between the decimal and binary prefix interpretation caused some consumer confusion and led to class action suits against HDD manufacturers. The plaintiffs argued that the use of decimal prefixes effectively misled consumers, while the defendants denied any wrongdoing or liability, asserting that their marketing and advertising complied in all respects with the law and that no class member sustained any damages or injuries.[122][123][124] In 2020, a California court ruled that use of the decimal prefixes with a decimal meaning was not misleading.[125]

    Form factors

    [edit]

    Main article: List of disk drive form factors

    8-, 5.25-, 3.5-, 2.5-, 1.8- and 1-inch HDDs, together with a ruler to show the size of platters and read-write heads
    A newer 2.5-inch (63.5 mm) 6,495 MB HDD compared to an older 5.25-inch full-height 110 MB HDD

    IBM’s first hard disk drive, the IBM 350, used a stack of fifty 24-inch platters, stored 3.75 MB of data (approximately the size of one modern digital picture), and was of a size comparable to two large refrigerators. In 1962, IBM introduced its model 1311 disk, which used six 14-inch (nominal size) platters in a removable pack and was roughly the size of a washing machine. This became a standard platter size for many years, used also by other manufacturers.[126] The IBM 2314 used platters of the same size in an eleven-high pack and introduced the “drive in a drawer” layout, sometimes called the “pizza oven”, although the “drawer” was not the complete drive. Into the 1970s, HDDs were offered in standalone cabinets of varying dimensions containing from one to four HDDs.

    Beginning in the late 1960s, drives were offered that fit entirely into a chassis that would mount in a 19-inch rack. Digital’s RK05 and RL01 were early examples using single 14-inch platters in removable packs, the entire drive fitting in a 10.5-inch-high rack space (six rack units). In the mid-to-late 1980s, the similarly sized Fujitsu Eagle, which used (coincidentally) 10.5-inch platters, was a popular product.

    With increasing sales of microcomputers having built-in floppy-disk drives (FDDs), HDDs that would fit to the FDD mountings became desirable. Starting with the Shugart Associates SA1000, HDD form factors initially followed those of 8-inch, 5¼-inch, and 3½-inch floppy disk drives. Although referred to by these nominal sizes, the actual sizes for those three drives respectively are 9.5″, 5.75″ and 4″ wide. Because there were no smaller floppy disk drives, smaller HDD form factors such as 2½-inch drives (actually 2.75″ wide) developed from product offerings or industry standards.

    As of 2019, 2½-inch and 3½-inch hard disks are the most popular sizes. By 2009, all manufacturers had discontinued the development of new products for the 1.3-inch, 1-inch and 0.85-inch form factors due to falling prices of flash memory,[127][128] which has no moving parts. While nominal sizes are in inches, actual dimensions are specified in millimeters.

    Performance characteristics

    [edit]

    Main article: Hard disk drive performance characteristics

    The factors that limit the time to access the data on an HDD are mostly related to the mechanical nature of the rotating disks and moving heads, including:

    • Seek time is a measure of how long it takes the head assembly to travel to the track of the disk that contains data.
    • Rotational latency is incurred because the desired disk sector may not be directly under the head when data transfer is requested. Average rotational latency is shown in the table, based on the statistical relation that the average latency is one-half the rotational period.
    • The bit rate or data transfer rate (once the head is in the right position) creates delay which is a function of the number of blocks transferred; typically relatively small, but can be quite long with the transfer of large contiguous files.

    Delay may also occur if the drive disks are stopped to save energy.

    Defragmentation is a procedure used to minimize delay in retrieving data by moving related items to physically proximate areas on the disk.[129] Some computer operating systems perform defragmentation automatically. Although automatic defragmentation is intended to reduce access delays, performance will be temporarily reduced while the procedure is in progress.[130]

    Time to access data can be improved by increasing rotational speed (thus reducing latency) or by reducing the time spent seeking. Increasing areal density increases throughput by increasing data rate and by increasing the amount of data under a set of heads, thereby potentially reducing seek activity for a given amount of data. The time to access data has not kept up with throughput increases, which themselves have not kept up with growth in bit density and storage capacity.

    Latency

    [edit]

    Rotational speed (rpm)Average rotational latency (ms)[q]
    15,0002
    10,0003
    7,2004.16
    5,4005.55
    4,8006.25

    Data transfer rate

    [edit]

    As of 2010, a typical 7,200-rpm desktop HDD has a sustained “disk-to-buffer” data transfer rate up to 1,030 Mbit/s.[131] This rate depends on the track location; the rate is higher for data on the outer tracks (where there are more data sectors per rotation) and lower toward the inner tracks (where there are fewer data sectors per rotation); and is generally somewhat higher for 10,000-rpm drives. A current, widely used standard for the “buffer-to-computer” interface is 3.0 Gbit/s SATA, which can send about 300 megabyte/s (10-bit encoding) from the buffer to the computer, and thus is still comfortably ahead of today’s[as of?] disk-to-buffer transfer rates. Data transfer rate (read/write) can be measured by writing a large file to disk using special file-generator tools, then reading back the file. Transfer rate can be influenced by file system fragmentation and the layout of the files.[129]

    HDD data transfer rate depends upon the rotational speed of the platters and the data recording density. Because heat and vibration limit rotational speed, advancing density becomes the main method to improve sequential transfer rates. Higher speeds require a more powerful spindle motor, which creates more heat. While areal density advances by increasing both the number of tracks across the disk and the number of sectors per track,[132] only the latter increases the data transfer rate for a given rpm. Since data transfer rate performance tracks only one of the two components of areal density, its performance improves at a lower rate.[133]

    Other considerations

    [edit]

    Other performance considerations include quality-adjusted price, power consumption, audible noise, and both operating and non-operating shock resistance.

    Access and interfaces

    [edit]

    Main article: Hard disk drive interface

    Inner view of a 1998 Seagate HDD that used the Parallel ATA interface
    2.5-inch SATA drive on top of 3.5-inch SATA drive, showing close-up of (7-pin) data and (15-pin) power connectors

    Current hard drives connect to a computer over one of several bus types, including parallel ATASerial ATASCSISerial Attached SCSI (SAS), and Fibre Channel. Some drives, especially external portable drives, use IEEE 1394, or USB. All of these interfaces are digital; electronics on the drive process the analog signals from the read/write heads. Current drives present a consistent interface to the rest of the computer, independent of the data encoding scheme used internally, and independent of the physical number of disks and heads within the drive.

    Typically, a DSP in the electronics inside the drive takes the raw analog voltages from the read head and uses PRML and Reed–Solomon error correction[134] to decode the data, then sends that data out the standard interface. That DSP also watches the error rate detected by error detection and correction, and performs bad sector remapping, data collection for Self-Monitoring, Analysis, and Reporting Technology, and other internal tasks.

    Modern interfaces connect the drive to the host interface with a single data/control cable. Each drive also has an additional power cable, usually direct to the power supply unit. Older interfaces had separate cables for data signals and for drive control signals.

    • Small Computer System Interface (SCSI), originally named SASI for Shugart Associates System Interface, was standard on servers, workstations, Commodore AmigaAtari ST and Apple Macintosh computers through the mid-1990s, by which time most models had been transitioned to newer interfaces. The length limit of the data cable allows for external SCSI devices. The SCSI command set is still used in the more modern SAS interface.
    • Integrated Drive Electronics (IDE), later standardized under the name AT Attachment (ATA, with the alias PATA (Parallel ATA) retroactively added upon introduction of SATA) moved the HDD controller from the interface card to the disk drive. This helped to standardize the host/controller interface, reduce the programming complexity in the host device driver, and reduced system cost and complexity. The 40-pin IDE/ATA connection transfers 16 bits of data at a time on the data cable. The data cable was originally 40-conductor, but later higher speed requirements led to an “ultra DMA” (UDMA) mode using an 80-conductor cable with additional wires to reduce crosstalk at high speed.
    • EIDE was an unofficial update (by Western Digital) to the original IDE standard, with the key improvement being the use of direct memory access (DMA) to transfer data between the disk and the computer without the involvement of the CPU, an improvement later adopted by the official ATA standards. By directly transferring data between memory and disk, DMA eliminates the need for the CPU to copy byte per byte, therefore allowing it to process other tasks while the data transfer occurs.
    • Fibre Channel (FC) is a successor to parallel SCSI interface on enterprise market. It is a serial protocol. In disk drives usually the Fibre Channel Arbitrated Loop (FC-AL) connection topology is used. FC has much broader usage than mere disk interfaces, and it is the cornerstone of storage area networks (SANs). Recently other protocols for this field, like iSCSI and ATA over Ethernet have been developed as well. Confusingly, drives usually use copper twisted-pair cables for Fibre Channel, not fiber optics. The latter are traditionally reserved for larger devices, such as servers or disk array controllers.
    • Serial Attached SCSI (SAS). The SAS is a new generation serial communication protocol for devices designed to allow for much higher speed data transfers and is compatible with SATA. SAS uses a mechanically compatible data and power connector to standard 3.5-inch SATA1/SATA2 HDDs, and many server-oriented SAS RAID controllers are also capable of addressing SATA HDDs. SAS uses serial communication instead of the parallel method found in traditional SCSI devices but still uses SCSI commands.
    • Serial ATA (SATA). The SATA data cable has one data pair for differential transmission of data to the device, and one pair for differential receiving from the device, just like EIA-422. That requires that data be transmitted serially. A similar differential signaling system is used in RS485LocalTalkUSBFireWire, and differential SCSI. SATA I to III are designed to be compatible with, and use, a subset of SAS commands, and compatible interfaces. Therefore, a SATA hard drive can be connected to and controlled by a SAS hard drive controller (with some minor exceptions such as drives/controllers with limited compatibility). However, they cannot be connected the other way round—a SATA controller cannot be connected to a SAS drive.

    Integrity and failure

    [edit]

    Main articles: Hard disk drive failureHead crash, and Data recovery

    See also: Solid-state drive § SSD reliability and failure modes, and RAID § Unrecoverable read errors during rebuild

    This section needs additional citations for verification. Relevant discussion may be found on the talk page. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (January 2025) (Learn how and when to remove this message)
    Close-up of an HDD head resting on a disk platter; its mirror reflection is visible on the platter surface. Unless the head is on a landing zone, the heads touching the platters while in operation can be catastrophic.
    HDD head crash
    Even worse crash

    Due to the extremely close spacing between the heads and the disk surface, HDDs are vulnerable to being damaged by a head crash – a failure of the disk in which the head scrapes across the platter surface, often grinding away the thin magnetic film and causing data loss. Head crashes can be caused by electronic failure, a sudden power failure, physical shock, contamination of the drive’s internal enclosure, wear and tear, corrosion, or poorly manufactured platters and heads.

    The HDD’s spindle system relies on air density inside the disk enclosure to support the heads at their proper flying height while the disk rotates. HDDs require a certain range of air densities to operate properly. The connection to the external environment and density occurs through a small hole in the enclosure (about 0.5 mm in breadth), usually with a filter on the inside (the breather filter).[135] If the air density is too low, then there is not enough lift for the flying head, so the head gets too close to the disk, and there is a risk of head crashes and data loss. Specially manufactured sealed and pressurized disks are needed for reliable high-altitude operation, above about 3,000 m (9,800 ft).[136] Modern disks include temperature sensors and adjust their operation to the operating environment. Breather holes can be seen on most disk drives, excluding sealed drives, such as drives that use helium, where any exposure to outside air would cause a failure – they usually have a sticker next to them, warning the user not to cover the holes. The air inside the operating drive is constantly moving too, being swept in motion by friction with the spinning platters. This air passes through an internal recirculation filter to remove any leftover contaminants from manufacture, any particles or chemicals that may have somehow entered the enclosure, and any particles or outgassing generated internally in normal operation. Very high humidity present for extended periods of time can corrode the heads and platters. An exception to this are hermetically sealed, helium-filled HDDs that largely eliminate environmental issues that can arise due to humidity or atmospheric pressure changes. Such HDDs were introduced by HGST in their first successful high-volume implementation in 2013.

    For giant magnetoresistive (GMR) heads in particular, a minor head crash from contamination (that does not remove the magnetic surface of the disk) still results in the head temporarily overheating, due to friction with the disk surface and can render the data unreadable for a short period until the head temperature stabilizes (so-called “thermal asperity”, a problem which can partially be dealt with by proper electronic filtering of the read signal).

    When the logic board of a hard disk fails, the drive can often be restored to functioning order and the data recovered by replacing the circuit board with one of an identical hard disk. In the case of read-write head faults, they can be replaced using specialized tools in a dust-free environment. If the disk platters are undamaged, they can be transferred into an identical enclosure and the data can be copied or cloned onto a new drive. In the event of disk-platter failures, disassembly and imaging of the disk platters may be required.[137] For logical damage to file systems, a variety of tools, including fsck on UNIX-like systems and CHKDSK on Windows, can be used for data recovery. Recovery from logical damage can require file carving.

    A common expectation is that hard disk drives designed and marketed for server use will fail less frequently than consumer-grade drives usually used in desktop computers. However, two independent studies by Carnegie Mellon University[138] and Google[139] found that the “grade” of a drive does not relate to the drive’s failure rate.

    A 2011 summary of research, into SSD and magnetic disk failure patterns by Tom’s Hardware summarized research findings as follows:[140]

    • Mean time between failures (MTBF) does not indicate reliability; the annualized failure rate is higher and usually more relevant.
    • HDDs do not tend to fail during early use, and temperature has only a minor effect; instead, failure rates steadily increase with age.
    • S.M.A.R.T. warns of mechanical issues but not other issues affecting reliability, and is therefore not a reliable indicator of condition.[141]
    • Failure rates of drives sold as “enterprise” and “consumer” are “very much similar”, although these drive types are customized for their different operating environments.[142][143]
    • In drive arrays, one drive’s failure significantly increases the short-term risk of a second drive failing.

    As of 2019, Backblaze, a storage provider, reported an annualized failure rate of two percent per year for a storage farm with 110,000 off-the-shelf HDDs with the reliability varying widely between models and manufacturers.[144] Backblaze subsequently reported that the failure rate for HDDs and SSD of equivalent age was similar.[7]

    To minimize cost and overcome failures of individual HDDs, storage systems providers rely on redundant HDD arrays. HDDs that fail are replaced on an ongoing basis.[144][90]

    Market segments

    [edit]

    Consumer segment

    [edit]

    Two high-end consumer SATA 2.5-inch 10,000 rpm HDDs, factory-mounted in 3.5-inch adapter frames

    Desktop HDDsDesktop HDDs typically have one to five internal platters, rotate at 5,400 to 10,000 rpm, and have a media transfer rate of 0.5 Gbit/s or higher (1 GB = 109 bytes; 1 Gbit/s = 109 bit/s). Earlier (1980–1990s) drives tend to be slower in rotation speed. As of May 2019, the highest-capacity desktop HDDs stored 16 TB,[145][146] with plans to release 18 TB drives later in 2019.[147] 18 TB HDDs were released in 2020[citation needed]. As of 2016, the typical speed of a hard drive in an average desktop computer is 7,200 rpm, whereas low-cost desktop computers may use 5,900 rpm or 5,400 rpm drives. For some time in the 2000s and early 2010s some desktop users and data centers also used 10,000 rpm drives such as Western Digital Raptor but such drives have become much rarer as of 2016 and are not commonly used now, having been replaced by NAND flash-based SSDs.Mobile (laptop) HDDsSmaller than their desktop and enterprise counterparts, they tend to be slower and have lower capacity, because typically has one internal platter and were 2.5″ or 1.8″ physical size instead of more common for desktops 3.5″ form-factor. Mobile HDDs spin at 4,200 rpm, 5,200 rpm, 5,400 rpm, or 7,200 rpm, with 5,400 rpm being the most common; 7,200 rpm drives tend to be more expensive and have smaller capacities, while 4,200 rpm models usually have very high storage capacities. Because of smaller platter(s), mobile HDDs generally have lower capacity than their desktop counterparts.Consumer electronics HDDs

    These drives typically spin at 5400 rpm and include:

    • Video hard drives, sometimes called “surveillance hard drives“, are embedded into digital video recorders and provide a guaranteed streaming capacity, even in the face of read and write errors.[148]
    • Drives embedded into automotive vehicles; they are typically built to resist larger amounts of shock and operate over a larger temperature range.

    External and portable HDDs

    See also: USB mass storage device class and Disk enclosure

    Two 2.5″ external USB hard drives
    Seagate Hard Drive with a controller board to convert SATA to USB, FireWire, and eSATA

    Current external hard disk drives typically connect via USB-C; earlier models use USB-B (sometimes with using of a pair of ports for better bandwidth) or (rarely) eSATA connection. Variants using USB 2.0 interface generally have slower data transfer rates when compared to internally mounted hard drives connected through SATA. Plug and play drive functionality offers system compatibility and features large storage options and portable design. As of March 2015, available capacities for external hard disk drives ranged from 500 GB to 10 TB.[149] External hard disk drives are usually available as assembled integrated products, but may be also assembled by combining an external enclosure (with USB or other interface) with a separately purchased drive. They are available in 2.5-inch and 3.5-inch sizes; 2.5-inch variants are typically called portable external drives, while 3.5-inch variants are referred to as desktop external drives. “Portable” drives are packaged in smaller and lighter enclosures than the “desktop” drives; additionally, “portable” drives use power provided by the USB connection, while “desktop” drives require external power bricks. Features such as encryptionWi-Fi connectivity,[150] biometric security or multiple interfaces (for example, FireWire) are available at a higher cost.[151] There are pre-assembled external hard disk drives that, when taken out from their enclosures, cannot be used internally in a laptop or desktop computer due to embedded USB interface on their printed circuit boards, and lack of SATA (or Parallel ATA) interfaces.[152][153]

    Enterprise and business segment

    [edit]Server and workstation HDDs

    Hot-swappable HDD enclosure

    Typically used with multiple-user computers running enterprise software. Examples are: transaction processing databases, internet infrastructure (email, webserver, e-commerce), scientific computing software, and nearline storage management software. Enterprise drives commonly operate continuously (“24/7”) in demanding environments while delivering the highest possible performance without sacrificing reliability. Maximum capacity is not the primary goal, and as a result the drives are often offered in capacities that are relatively low in relation to their cost.[154]The fastest enterprise HDDs spin at 10,000 or 15,000 rpm, and can achieve sequential media transfer speeds above 1.6 Gbit/s[155] and a sustained transfer rate up to 1 Gbit/s.[155] Drives running at 10,000 or 15,000 rpm use smaller platters to mitigate increased power requirements (as they have less air drag) and therefore generally have lower capacity than the highest capacity desktop drives. Enterprise HDDs are commonly connected through Serial Attached SCSI (SAS) or Fibre Channel (FC). Some support multiple ports, so they can be connected to a redundant host bus adapter.Enterprise HDDs can have sector sizes larger than 512 bytes (often 520, 524, 528 or 536 bytes). The additional per-sector space can be used by hardware RAID controllers or applications for storing Data Integrity Field (DIF) or Data Integrity Extensions (DIX) data, resulting in higher reliability and prevention of silent data corruption.[156]Surveillance hard drives;Video recording HDDs used in network video recorders.[148]

    Economy

    [edit]

    Price evolution

    [edit]

    HDD price per byte decreased at the rate of 40% per year during 1988–1996, 51% per year during 1996–2003 and 34% per year during 2003–2010.[157][76] The price decrease slowed down to 13% per year during 2011–2014, as areal density increase slowed and the 2011 Thailand floods damaged manufacturing facilities[81] and have held at 11% per year during 2010–2017.[158]

    The Federal Reserve Board has published a quality-adjusted price index for large-scale enterprise storage systems including three or more enterprise HDDs and associated controllers, racks and cables. Prices for these large-scale storage systems decreased at the rate of 30% per year during 2004–2009 and 22% per year during 2009–2014.[76]

    Manufacturers and sales

    [edit]

    See also: History of hard disk drives and List of defunct hard disk manufacturers

    Diagram of HDD manufacturer consolidation

    More than 200 companies have manufactured HDDs over time, but consolidations have concentrated production to just three manufacturers today: Western DigitalSeagate, and Toshiba. Production is mainly in the Pacific rim.

    HDD unit shipments peaked at 651 million units in 2010 and have been declining since then to 166 million units in 2022.[159] Seagate at 43% of units had the largest market share.[160]

    Competition from SSDs

    [edit]

    HDD and SSD

    HDDs are being superseded by solid-state drives (SSDs) in markets where the higher speed (up to 7 gigabytes per second for M.2 (NGFF) NVMe drives[161] and 2.5 gigabytes per second for PCIe expansion card drives)[162]), ruggedness, and lower power of SSDs are more important than price, since the bit cost of SSDs is four to nine times higher than HDDs.[16][15] As of 2016, HDDs are reported to have a failure rate of 2–9% per year, while SSDs have fewer failures: 1–3% per year.[163] However, SSDs have more un-correctable data errors than HDDs.[163]

    SSDs are available in larger capacities (up to 100 TB)[38] than the largest HDD, as well as higher storage densities (100 TB and 30 TB SSDs are housed in 2.5 inch HDD cases with the same height as a 3.5-inch HDD),[164][165][166][167][168] although such large SSDs are very expensive.

    A laboratory demonstration of a 1.33 Tb 3D NAND chip with 96 layers (NAND commonly used in solid-state drives (SSDs)) had 5.5 Tbit/in2 as of 2019),[169] while the maximum areal density for HDDs is 1.5 Tbit/in2. The areal density of flash memory is doubling every two years, similar to Moore’s law (40% per year) and faster than the 10–20% per year for HDDs. As of 2018, the maximum capacity was 16 terabytes for an HDD,[170] and 100 terabytes for an SSD.[171] HDDs were used in 70% of the desktop and notebook computers produced in 2016, and SSDs were used in 30%. The usage share of HDDs is declining and could drop below 50% in 2018–2019 according to one forecast, because SSDs are replacing smaller-capacity (less than one terabyte) HDDs in desktop and notebook computers and MP3 players.[172]

    The market for silicon-based flash memory (NAND) chips, used in SSDs and other applications, is growing faster than for HDDs. Worldwide NAND revenue grew 16% per year from $22 billion to $57 billion during 2011–2017, while production grew 45% per year from 19 exabytes to 175 exabytes.[173]

  • LAPTOP

    laptop computer or notebook computer, also known as a laptop or notebook, is a small, portable personal computer (PC). Laptops typically have a clamshell form factor with a flat-panel screen on the inside of the upper lid and an alphanumeric keyboard and pointing device on the inside of the lower lid.[1][2] Most of the computer’s internal hardware is in the lower part, under the keyboard, although many modern laptops have a built-in webcam at the top of the screen, and some even feature a touchscreen display. In most cases, unlike tablet computers which run on mobile operating systems, laptops tend to run on desktop operating systems, which were originally developed for desktop computers.

    Laptops are used in a variety of settings, such as at work (especially on business trips), in education, for playing gamesweb browsing, for personal multimedia, and for general home computer use. They can run on both AC power and rechargable battery packs and can be folded shut for convenient storage and transportation, making them suitable for mobile use.[3] Laptops combine many of the input/output components and capabilities of a desktop computer into a single unit, including a display screen (usually 11–17 in or 280–430 mm in diagonal size), small speakers, a keyboard, and a pointing device (namely compact ones such as touchpads or pointing sticks). Hardware specifications may vary significantly between different types, models, and price points.

    The word laptop, modeled after the term desktop (as in desktop computer), refers to the fact that the computer can be practically placed on the user’s lap; while the word notebook refers to most laptops sharing a form factor with paper notebooks. As of 2024, in American English, the terms laptop and notebook are used interchangeably;[4] in other dialects of English, one or the other may be preferred.[5] The term notebook originally referred to a type of portable computer that was smaller and lighter than mainstream laptops of the time, but has since come to mean the same thing and no longer refers to any specific size.

    Design elements, form factors, and construction can also vary significantly between models depending on the intended use. Examples of specialized models of laptops include 2-in-1 laptops, with keyboards that either be detached or pivoted out of view from the display (often marketed having a “laptop mode”), and rugged laptops, for use in construction or military applicationsPortable computers, which later developed into modern laptops, were originally considered to be a small niche market, mostly for specialized field applications, such as in the military, for accountants, or travelling sales representatives. As portable computers evolved into modern laptops, they became widely used for a variety of purposes.[6]

    History

    Main article: History of laptops

    See also: Portable computer § Early history

    Alan Kay holding the mockup of his Dynabook concept in 2008

    The history of the laptop follows closely behind the development of the personal computer itself. A “personal, portable information manipulator” was imagined by Alan Kay at Xerox PARC in 1968,[7] and described in his 1972 paper as the “Dynabook“.[8] The IBM Special Computer APL Machine Portable (SCAMP) was demonstrated in 1973.[9] This prototype was based on the IBM PALM processor.[10] The IBM 5100, the first commercially available portable computer, appeared in September 1975, and was based on the SCAMP prototype.[11]

    IBM 5100 (1975)

    As 8-bit CPU machines became widely accepted, the number of portables increased rapidly. The first “laptop-sized notebook computer” was the Epson HX-20,[12][13] invented (patented) by Suwa Seikosha‘s Yukio Yokozawa in July 1980,[14] introduced at the COMDEX computer show in Las Vegas by Japanese company Seiko Epson in 1981,[15][13] and released in July 1982.[13][16] It had an LCD screen, a rechargeable battery, and a calculator-size printer, in a 1.6 kg (3.5 lb) chassis, the size of an A4 notebook.[13] It was described as a “laptop” and “notebook” computer in its patent.[14]

    The Epson HX-20, the first “notebook computer“, was invented in 1980 and introduced in 1982.
    GRiD Compass 1101 (1982)

    Both Tandy/RadioShack and Hewlett-Packard (HP) also produced portable computers of varying designs during this period.[17][18] The first laptops using the flip form factor appeared in the early 1980s. The Dulmont Magnum was released in Australia in 1981–82, but was not marketed internationally until 1984–85. The US$8,150 (equivalent to $26,550 in 2024) GRiD Compass 1101, released in 1982, was used at NASA and by the military, among others. The Sharp PC-5000,[19] the Ampere WS-1,[20] and Gavilan SC were released between 1983 and 1985.[21][20][22] The Toshiba T1100 won acceptance by PC experts and the mass market as a way to have PC portability.[23]

    From 1983 onward, several new input techniques were developed and included in laptops, including the touch pad (Gavilan SC, 1983), the pointing stick (IBM ThinkPad 700, 1992), and handwriting recognition (Linus Write-Top,[24] 1987). Some CPUs, such as the 1990 Intel i386SL, were designed to use minimum power to increase the battery life of portable computers and were supported by dynamic power management features such as Intel SpeedStep and AMD PowerNow! in some designs.

    Some laptops in the 1980s using red plasma displays could only be used when connected to AC power, and had a built in power supply.[25]

    The development of memory cards was driven in the 1980s by the need for a floppy-disk-drive alternative, having lower power consumption, less weight, and reduced volume in laptops. The Personal Computer Memory Card International Association (PCMCIA) was an industry association created in 1989 to promote a standard for memory cards in PCs. The specification for PCMCIA type I cards, later renamed PC Cards, was first released in 1990.[26][27]

    Zenith SupersPort laptop, released in 1988

    Displays reached 640×480 (VGA) resolution by 1988 (Compaq SLT/286), and color screens started becoming a common upgrade in 1991,[28] with increases in resolution and screen size occurring frequently until the introduction of 17″ screen laptops in 2003. Hard drives started to be used in portables, encouraged by the introduction of 3.5″ drives in the late 1980s, and became common in laptops starting with the introduction of 2.5″ and smaller drives around 1990; capacities have typically lagged behind those of physically larger desktop drives.

    Optical disc drives became common in full-size laptops around 1997: initially, CD-ROM drives, supplanted by CD-R, then DVD, then Blu-ray drives with writing capability. Starting around 2011, the trend shifted against internal optical drives, and as of 2022, they have largely disappeared, though are still readily available as external peripherals.

    Resolutions of laptop webcams are 720p (HD), or 480p in lower-end laptops.[29] The earliest-known laptops with 1080p (Full HD) webcams, like the Samsung 700G7C, were released in the early 2010s.[30]

    Etymology

    The terms laptop and notebook trace their origins to the early 1980s, coined to describe portable computers in a size class smaller than the mainstream units (so-called “luggables”) but larger than pocket computers.[31][32] The etymologist William Safire traced the origin of laptop to some time before 1984;[33] the earliest attestation of laptop found by the Oxford English Dictionary dates to 1983.[34] The word is modeled after the term desktop, as in desktop computer.[33] Notebook, meanwhile, emerged earlier in 1982[35] to describe Epson‘s HX-20 portable, whose dimensions roughly correspond to a letter-sized pad of paper.[32][36]: 9 [37] Notebooks emerged as their own separate market from laptops with the release of the NEC UltraLite in 1988.[38]: 16 

    Notebooks and laptops continued to occupy distinct market segments into the mid-1990s,[39] but ergonomic considerations and customer preference for larger screens soon led to notebooks converging with laptops in the late 1990s.[40] Now, the terms laptop and notebook are synonymous, with laptop being the more common term in most English-speaking territories.[40][5]

    Types of laptops

    Compaq Armada laptop from the late 1990s
    Apple MacBook Air, an “ultraportable” laptop weighing under 3.0 lb (1.36 kg)
    Lenovo IdeaPad laptop
    Lenovo’s ThinkPad business laptop, originally an IBM product
    Asus Transformer Pad, a hybrid tablet, powered by Android OS
    Microsoft Surface Pro 3, 2-in-1 detachable
    Alienware gaming laptop with backlit keyboard and touch pad
    Samsung Sens laptop
    Panasonic Toughbook CF-M34, a rugged laptop/subnotebook

    Since the 1970s introduction of portable computers, their forms have changed significantly, resulting in a variety of visually and technologically differing subclasses. Excepting distinct legal trademark around terms (notably Ultrabook), hard distinctions between these classes were rare, and their usage has varied over time and between sources. Since the late 2010s, more specific terms have become less commonly used, with sizes distinguished largely by the size of the screen.

    Smaller and larger laptops

    Main articles: Notebook (laptop)Subnotebook, and Desktop replacement computer

    There were in the past a number of marketing categories for smaller and larger laptop computers; these included “notebook” and “subnotebook” models, low cost “netbooks“, and “ultra-mobile PCs” where the size class overlapped with devices like smartphone and handheld tablets, and “Desktop replacement” laptops for machines notably larger and heavier than typical to operate more powerful processors or graphics hardware.[41] All of these terms have fallen out of favor as the size of mainstream laptops has gone down and their capabilities have gone up; except for niche models, laptop sizes tend to be distinguished by the size of the screen, and for more powerful models, by any specialized purpose the machine is intended for, such as a “gaming laptop” or a “mobile workstation” for professional use.

    See also: Gaming computer § Gaming laptop computers, and Mobile workstation

    Convertible, hybrid, 2-in-1

    Main article: 2-in-1 PC

    The latest trend of technological convergence in the portable computer industry spawned a broad range of devices, which combined features of several previously separate device types. The hybridsconvertibles, and 2-in-1s emerged as crossover devices, which share traits of both tablets and laptops. All such devices have a touchscreen display designed to allow users to work in a tablet mode, using either multi-touch gestures or a stylus/digital pen.

    Convertibles are devices with the ability to conceal a hardware keyboard. Keyboards on such devices can be flipped, rotated, or slid behind the back of the chassis, thus transforming from a laptop into a tablet. Hybrids have a keyboard detachment mechanism, and due to this feature, all critical components are situated in the part with the display. 2-in-1s can have a hybrid or a convertible form, often dubbed 2-in-1 detachable and 2-in-1 convertibles respectively, but are distinguished by the ability to run a desktop OS, such as Windows 10. 2-in-1s are often marketed as laptop replacement tablets.[42]

    2-in-1s are often very thin, around 10 millimetres (0.39 in), and light devices with a long battery life. 2-in-1s are distinguished from mainstream tablets as they feature an x86-architecture CPU (typically a low- or ultra-low-voltage model), such as the Intel Core i5, run a full-featured desktop OS like Windows 10, and have a number of typical laptop I/O ports, such as USB 3 and Mini DisplayPort.

    2-in-1s are designed to be used not only as a media consumption device but also as valid desktop or laptop replacements, due to their ability to run desktop applications, such as Adobe Photoshop. It is possible to connect multiple peripheral devices, such as a mouse, keyboard, and several external displays to a modern 2-in-1.

    Microsoft Surface Pro-series devices and Surface Book are examples of modern 2-in-1 detachable, whereas Lenovo Yoga-series computers are a variant of 2-in-1 convertibles. While the older Surface RT and Surface 2 have the same chassis design as the Surface Pro, their use of ARM processors and Windows RT do not classify them as 2-in-1s, but as hybrid tablets.[43] Similarly, a number of hybrid laptops run a mobile operating system, such as Android. These include Asus’s Transformer Pad devices, examples of hybrids with a detachable keyboard design, which do not fall in the category of 2-in-1s.

    Rugged laptop

    Main article: Rugged computer

    A rugged laptop is designed to reliably operate in harsh usage conditions such as strong vibrations, extreme temperatures, and wet or dusty environments. Rugged laptops are bulkier, heavier, and much more expensive than regular laptops,[44] and thus are seldom seen in regular consumer use.

    Hardware

    This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (July 2016) (Learn how and when to remove this message)

    Further information: Personal computer and Computer hardware

    Inner view of a MacBook (Retina) laptop
    SODIMM memory module

    The basic components of laptops function identically to their desktop counterparts. Traditionally they were miniaturized and adapted to mobile use, The design restrictions on power, size, and cooling of laptops limit the maximum performance of laptop parts compared to that of desktop components, although that difference has increasingly narrowed.[45]

    In general, laptop components are not intended to be replaceable or upgradable by the end-user, except for components that can be detached; in the past, batteries and optical drives were commonly exchangeable. Some laptops feature socketed processors with sockets such as the Socket G2, but many laptops use processors that are soldered to the motherboard. Many laptops come with RAM and storage that is soldered to the motherboard and cannot be easily replaced. This restriction is one of the major differences between laptops and desktop computers, because the large “tower” cases used in desktop computers are designed so that new motherboardshard diskssound cardsRAM, and other components can be added. Memory and storage can often be upgraded with some disassembly, but with the most compact laptops, there may be no upgradeable components at all.[46]

    The following sections summarize the differences and distinguishing features of laptop components in comparison to desktop personal computer parts.[47]

    Display

    The typical laptop has a screen that, when unfolded, is upright to the user.

    Screen technology

    Laptop screens most commonly use liquid-crystal display (LCD) technology, although OLED panels have been used in some models.[citation needed] The display interfaces with the motherboard using the embedded DisplayPort protocol via the Low-voltage differential signaling (LVDS) 30 or 40 pin connector. Earlier laptops use the FPD-Link standard. The panels are mainly manufactured by AU OptronicsBOE TechnologyLG Display or Samsung Display.

    Surface finish

    Externally, it can be a glossy or a matte (anti-glare) screen.

    Sizes

    In the past, there was a broader range of marketing terms (both formal and informal) to distinguish between different sizes of laptops. These included netbookssubnotebooksultra-mobile PC, and desktop replacement computers; these are sometimes still used informally, although they are generally not used anymore in manufacturer marketing.

    As of 2021, mainstream consumer laptops tend to come with 11″, 13″ or 15″-16″ screens; 14″ models are more popular among business machines. Larger and smaller models are available, but less common – there is no clear dividing line in minimum or maximum size. Machines small enough to be handheld (screens in the 6–8″ range) can be marketed either as very small laptops or “handheld PCs”, while the distinction between the largest laptops and “All-in-One” desktops is whether they fold for travel.

    Resolution

    Having a higher resolution display allows more items to fit onscreen at a time, improving the user’s ability to multitask, although, at the higher resolutions on smaller screens, the resolution may only serve to display sharper graphics and text rather than increasing the usable area. Since the introduction of the MacBook Pro with Retina display in 2012, there has been an increase in the availability of “HiDPI” (or high pixel density) displays; as of 2022, this is generally considered to be anything higher than 1920 pixels wide. This has increasingly converged around 4K (3840-pixel-wide) resolutions.

    External displays can be connected to most laptops, with most models supporting at least one.[48] The use of technology such as USB4 (section Alternate Mode partner specifications). DisplayPort Alt Mode has been utilized to charge a laptop and provide display output over one USB-C Cable.[49]

    Refresh rates

    Most laptop displays have a maximum refresh rate of 60 Hz. The Dell M17x and Samsung 700G7A, both released in 2011, were among the first laptops to feature a 120 Hz refresh rate,[50][51] and more such laptops have appeared in the years since.

    Central processing unit (CPU)

    Laptop CPUs have advanced power-saving features and produce less heat than those intended for desktop use. Mainstream laptop CPUs made after 2018 have at least two processor cores, often four cores, and sometimes more, with 6 and 8 cores becoming more common.

    For the low price and mainstream performance, there is no longer a significant performance difference between laptop and desktop CPUs, but at the high end, the fastest desktop CPUs still substantially outperform the fastest laptop processors, at the expense of massively higher power consumption and heat generation; the fastest laptop processors top out at 56 watts of heat, while the fastest desktop processors top out at 150 watts (and often need water cooling).

    There has been a wide range of CPUs designed for laptops available from both IntelAMD, and other manufacturers. On non-x86 architectures, Motorola and IBM produced the chips for the former PowerPC-based Apple laptops (iBook and PowerBook). Between around 2000 to 2014, most full-size laptops had socketed, replaceable CPUs; on thinner models, the CPU was soldered on the motherboard and was not replaceable or upgradable without replacing the motherboard. Since 2015, Intel has not offered new laptop CPU models with pins to be interchangeable, preferring ball grid array chip packages which have to be soldered;[52] and as of 2021, only a few rare models using desktop parts.

    In the past, some laptops have used a desktop processor instead of the laptop version and have had high-performance gains at the cost of greater weight, heat, and limited battery life; this is not unknown as of 2022, but since around 2010, the practice has been restricted to small-volume gaming models. Laptop CPUs are rarely able to be overclocked; most use locked processors. Even on gaming models where unlocked processors are available, the cooling system in most laptops is often very close to its limits and there is rarely headroom for an overclocking–related operating temperature increase.

    Graphics processing unit (GPU)

    On most laptops, the GPU is integrated into the CPU to conserve power and space. This was introduced by Intel with the Core i-series of mobile processors in 2010, followed by similar AMD APU processors in January 2011.

    Before that, lower-end machines tended to use graphics processors integrated into the system chipset, while higher-end machines had a separate graphics processor. In the past, laptops lacking a separate graphics processor were limited in their utility for gaming and professional applications involving 3D graphics, but the capabilities of CPU-integrated graphics have converged with the low-end of dedicated graphics processors since the mid-2010s. For laptops possessing limited onboard graphics capability but sufficient I/O throughput, an external GPU (eGPU) can provide additional graphics power at the cost of physical space and portability.

    Higher-end laptops intended for gaming or professional 3D work still come with dedicated (and in some cases even dual) graphics processors on the motherboard or as an internal expansion card. Since 2011, these almost always involve switchable graphics so that when there is no demand for the higher performance dedicated graphics processor, the more power-efficient integrated graphics processor will be used. Nvidia Optimus and AMD Hybrid Graphics are examples of this sort of system of switchable graphics.

    Traditionally, the system RAM on laptops (as well as on desktop computers) was physically separate from the graphics memory used by the GPU. Apple’s M series SoCs feature a unified pool of memory for both the system and the GPU; this approach can produce substantial efficiency gains for some applications but comes at the cost of eGPU support.

    Memory

    Since around the year 2000, most laptops have used SO-DIMM slots in which RAM is mounted,[47] although, as of 2021, an increasing number of models use memory soldered to the motherboard, either alongside SO-DIMM slots or without any slots and soldering all memory to the motherboard. A new form factor, the CAMM module, is slated to fix the size and timing limitation. Before 2000, most laptops used proprietary memory modules if their memory was upgradable.

    In the early 2010s, high end laptops such as the 2011 Samsung 700G7A have passed the 10 GB RAM barrier, featuring 16 GB of RAM.[53]

    When upgradeable, memory slots are sometimes accessible from the bottom of the laptop for ease of upgrading; in other cases, accessing them requires significant disassembly. Most laptops have two memory slots, although some will have only one, either for cost savings or because some amount of memory is soldered. Some high-end models have four slots; these are usually mobile engineering workstations, although a few high-end models intended for gaming do as well.

    As of 2021, 8 GB RAM is most common, with lower-end models occasionally having 4 GB. Higher-end laptops may come with 16 GB of RAM or more.

    Internal storage

    The earliest laptops most often used floppy disks for storage, although a few used either RAM disk or tape. By the late 1980s hard disk drives had become the standard form of storage.

    Between 1990 and 2009, almost all laptops typically had a hard disk drive (HDD) for storage; since then, solid-state drives (SSD) have gradually come to replace hard drives in all but some inexpensive consumer models. Solid-state drives are faster and more power-efficient, as well as eliminating the hazard of drive and data corruption caused by a laptop’s physical impacts, as they use no mechanical parts such as a rotational platter.[54] In many cases, they are more compact as well. Initially, in the late 2000s, SSDs were substantially more expensive than HDDs, but as of 2021 prices on smaller capacity (under 1 terabyte) drives have converged; larger capacity drives remain more expensive than comparable-sized HDDs.

    Since around 1990, where a hard drive is present it will typically be a 2.5-inch drive; some very compact laptops support even smaller 1.8-inch HDDs, and a very small number used 1″ Microdrives. Some SSDs are built to match the size/shape of a laptop hard drive, but increasingly they have been replaced with smaller mSATA or M.2 cards. SSDs using the newer and much faster NVM Express standard for connecting are only available as cards.

    As of 2022, many laptops no longer contain space for a 2.5″ drive, accepting only M.2 cards; a few of the smallest have storage soldered to the motherboard. For those that can, they can typically contain a single 2.5-inch drive, but a small number of laptops with a screen wider than 15 inches can house two drives.

    A variety of external HDDs or NAS data storage servers with support of RAID technology can be attached to virtually any laptop over such interfaces as USBFireWireeSATA, or Thunderbolt, or over a wired or wireless network to further increase space for the storage of data. Many laptops also incorporate a SD or microSD card slot. This enables users to download digital pictures from an SD card onto a laptop, thus enabling them to delete the SD card’s contents to free up space for taking new pictures.

    Removable media drive

    Optical disc drives capable of playing CD-ROMs, compact discs (CD), DVDs, and in some cases, Blu-ray discs (BD), were nearly universal on full-sized models between the mid-1990s and the early 2010s. As of 2021, drives are uncommon in compact or premium laptops; they remain available in some bulkier models, but the trend towards thinner and lighter machines is gradually eliminating these drives and players – when needed they can be connected via USB instead.

    Speaker

    Laptops usually have built-in speakers and built-in microphones. However, integrated speakers may be small and of restricted sound quality to conserve space.

    Inputs

    Closeup of a touchpad on an Acer laptop, where buttons and the touch-sensitive surface are shared
    Closeup of a TrackPoint cursor and UltraNav buttons on a ThinkPad laptop
    Interfaces on a ThinkPad laptop (2011): Ethernet network port (center), VGA (left), DisplayPort (top right) and USB 2.0 (bottom right). Due to the trend towards very flat laptops and the widespread use of WLAN, the relatively high Ethernet socket is no longer mandatory in today’s devices, as is the technically outdated VGA.

    An alphanumeric keyboard is used to enter text, data, and other commands (e.g., function keys). A touchpad (also called a trackpad), a pointing stick, or both, are used to control the position of the cursor on the screen, and an integrated keyboard[55] is used for typing. Some touchpads have buttons separate from the touch surface, while others share the surface. A quick double-tap is typically registered as a click, and operating systems may recognize multi-finger touch gestures.

    An external keyboard and mouse may be connected using a USB port or wirelessly, via Bluetooth or similar technology. Some laptops have multitouch touchscreen displays, either available as an option or standard. Most laptops have webcams and microphones, which can be used to communicate with other people with both moving images and sound, via web conferencing or video-calling software.

    Laptops typically have USB ports and a combined headphone/microphone jack, for use with headphones, a combined headset, or an external mic. Many laptops have a card reader for reading digital camera SD cards.

    Input/output (I/O) ports

    On a typical laptop, there are several USB ports; if they use only the older USB connectors instead of USB-C, they will typically have an external monitor port (VGADVIHDMI or Mini DisplayPort or occasionally more than one), an audio in/out port (often in form of a single socket) is common. It is possible to connect up to three external displays to a 2014-era laptop via a single Mini DisplayPort, using multi-stream transport technology.[48]

    Apple, in a 2015 version of its MacBook, transitioned from a number of different I/O ports to a single USB-C port.[56] This port can be used both for charging and connecting a variety of devices through the use of aftermarket adapters. Apple has since transitioned back to using a number of different ports. Google, with its updated version of Chromebook Pixel, shows a similar transition trend towards USB-C, although keeping older USB Type-A ports for a better compatibility with older devices.[57] Although being common until the end of the 2000s decade, Ethernet network port are rarely found on modern laptops, due to widespread use of wireless networking, such as Wi-FiLegacy ports such as a PS/2 keyboard/mouse port, serial portparallel port, or FireWire are provided on some models, but they are increasingly rare. On Apple‘s systems, and on a handful of other laptops, there are also Thunderbolt ports, but Thunderbolt 3 uses USB-C. Laptops typically have a headphone jack, so that the user can connect headphones or amplified speaker systems for listening to music or other audio.

    Expansion cards

    In the past, a PC Card (formerly PCMCIA) or ExpressCard slot for expansion was often present on laptops to allow adding and removing functionality, even when the laptop is powered on; these are becoming increasingly rare since the introduction of USB 3.0. Some internal subsystems such as Ethernet, Wi-Fi, or a wireless cellular modem can be implemented as replaceable internal expansion cards, usually accessible under an access cover on the bottom of the laptop. The standard for such cards is PCI Express, which comes in both mini and even smaller M.2 sizes. In newer laptops, it is not uncommon to also see Micro SATA (mSATA) functionality on PCI Express Mini or M.2 card slots allowing the use of those slots for SATA-based solid-state drives.[58]

    Mobile PCI Express Module (MXM) is a type of expansion card that is used for graphics cards.[59]

    Battery and power supply

    Main article: Smart battery

    Almost all laptops use smart batteries.

    Since the late 1990s, laptops have typically used lithium ion or lithium polymer batteries, These replaced the older nickel metal-hydride typically used in the 1990s, and nickel–cadmium batteries used in most of the earliest laptops. A few of the oldest laptops used non-rechargeable batteries, or lead–acid batteries.

    Battery life is highly variable by model and workload and can range from one hour to nearly a day. A battery’s performance gradually decreases over time; a noticeable reduction in capacity is typically evident after two to three years of regular use, depending on the charging and discharging pattern and the design of the battery. Innovations in laptops and batteries have seen situations in which the battery can provide up to 24 hours of continued operation, assuming average power consumption levels. An example is the HP EliteBook 6930p when used with its ultra-capacity battery.[60]

    Laptops with removable batteries may support larger replacement batteries with extended capacity.

    A laptop’s battery is charged using an external power supply, which is plugged into a wall outlet. The power supply outputs a DC voltage typically in the range of 7.2—24 volts. The power supply is usually external and connected to the laptop through a DC connector cable. In most cases, it can charge the battery and power the laptop simultaneously. When the battery is fully charged, the laptop continues to run on power supplied by the external power supply, avoiding battery use. If the used power supply is not strong enough to power computing components and charge the battery simultaneously, the battery may charge in a shorter period of time if the laptop is turned off or sleeping. The charger typically adds about 400 grams (0.88 lb) to the overall transporting weight of a laptop, although some models are substantially heavier or lighter. Most 2016-era laptops use a smart battery, a rechargeable battery pack with a built-in battery management system (BMS). The smart battery can internally measure voltage and current, and deduce charge level and State of Health (SoH) parameters, indicating the state of the cells.[citation needed]

    Power connectors

    Laptop power supply with cylindrical coaxial DC power connector

    Historically, DC connectors, typically cylindrical/barrel-shaped coaxial power connectors have been used in laptops. Some vendors such as Lenovo made intermittent use of a rectangular connector.

    Some connector heads feature a center pin to allow the end device to determine the power supply type by measuring the resistance between it and the connector’s negative pole (outer surface). Vendors may block charging if a power supply is not recognized as the original part, which could deny the legitimate use of universal third-party chargers.[61]

    With the advent of USB-Cportable electronics made increasing use of it for both power delivery and data transfer. Its support for 20 V (common laptop power supply voltage) and 5 A typically suffices for low to mid-end laptops, but some with higher power demands such as gaming laptops depend on dedicated DC connectors to handle currents beyond 5 A without risking overheating, some even above 10 A. Additionally, dedicated DC connectors are more durable and less prone to wear and tear from frequent reconnection, as their design is less delicate.[62]

    Cooling

    Waste heat from the operation is difficult to remove in the compact internal space of a laptop. The earliest laptops used passive cooling; this gave way to heat sinks placed directly on the components to be cooled, but when these hot components are deep inside the device, a large space-wasting air duct is needed to exhaust the heat. Modern laptops instead rely on heat pipes to rapidly move waste heat towards the edges of the device, to allow for a much smaller and compact fan and heat sink cooling system. Waste heat is usually exhausted away from the device operator towards the rear or sides of the device. Multiple air intake paths are used since some intakes can be blocked, such as when the device is placed on a soft conforming surface like a chair cushion. Secondary device temperature monitoring may reduce performance or trigger an emergency shutdown if it is unable to dissipate heat, such as if the laptop were to be left running and placed inside a carrying case. Aftermarket cooling pads with external fans can be used with laptops to reduce operating temperatures.

    Docking station

    Docking station and laptop

    docking station (sometimes referred to simply as a dock) is a laptop accessory that contains multiple ports and in some cases expansion slots or bays for fixed or removable drives. A laptop connects and disconnects to a docking station, typically through a single large proprietary connector. A docking station is an especially popular laptop accessory in a corporate computing environment, due to the possibility of a docking station transforming a laptop into a full-featured desktop replacement, yet allowing for its easy release. This ability can be advantageous to “road warrior” employees who have to travel frequently for work, and yet who also come into the office. If more ports are needed, or their position on a laptop is inconvenient, one can use a cheaper passive device known as a port replicator. These devices mate to the connectors on the laptop, such as through USB or FireWire.

    Charging trolleys

    Laptop charging trolleys, also known as laptop trolleys or laptop carts, are mobile storage containers to charge multiple laptopsnetbooks, and tablet computers at the same time. The trolleys are used in schools that have replaced their traditional static computer labs[63] suites of desktop equipped with “tower” computers, but do not have enough plug sockets in an individual classroom to charge all of the devices. The trolleys can be wheeled between rooms and classrooms so that all students and teachers in a particular building can access fully charged IT equipment.[64]

    Laptop charging trolleys are also used to deter and protect against opportunistic and organized theft. Schools, especially those with open plan designs, are often prime targets for thieves who steal high-value items. Laptops, netbooks, and tablets are among the highest–value portable items in a school. Moreover, laptops can easily be concealed under clothing and stolen from buildings. Many types of laptop–charging trolleys are designed and constructed to protect against theft. They are generally made out of steel, and the laptops remain locked up while not in use. Although the trolleys can be moved between areas from one classroom to another, they can often be mounted or locked to the floor, support pillars, or walls to prevent thieves from stealing the laptops, especially overnight.[63]

    Solar panels

    Main article: Solar notebook

    In some laptops, solar panels are able to generate enough solar power for the laptop to operate.[65] The One Laptop Per Child Initiative released the OLPC XO-1 laptop which was tested and successfully operated by use of solar panels.[66] They were designing an OLPC XO-3 laptop with these features. The OLPC XO-3 was planned to operate with 2 watts of electricity.[67][68] Samsung has also designed the NC215S solar–powered notebook that was planned to be sold commercially in the U.S. market.[69]

    Accessories

    A common accessory for laptops is a laptop sleeve, laptop skin, or laptop case, which provides a degree of protection from scratches. Sleeves, which are distinguished by being relatively thin and flexible, are most commonly made of neoprene, with sturdier ones made of low-resilience polyurethane. Some laptop sleeves are wrapped in ballistic nylon to provide some measure of waterproofing. Bulkier and sturdier cases can be made of metal with polyurethane padding inside and may have locks for added security. Metal, padded cases also offer protection against impacts and drops. Another common accessory is a laptop cooler, a device that helps lower the internal temperature of the laptop either actively or passively. A common active method involves using electric fans to draw heat away from the laptop, while a passive method might involve propping the laptop up on some type of pad so it can receive more airflow. Some stores sell laptop pads that enable a reclining person on a bed to use a laptop.

    Modularity

    Opened bottom covers allow replacement of RAM and storage modules (Lenovo G555)

    Some of the components of earlier models of laptops can easily be replaced without opening completely its bottom part, such as the keyboard, battery, hard disk, memory modules, and CPU cooling fan.

    Some of the components of recent models of laptops reside inside. Replacing most of its components, such as the keyboard, battery, hard disk, memory modules, CPU cooling fan, etc., requires the removal of either the top or bottom part, the removal of the motherboard, and returning them.

    In some types, solder and glue are used to mount components such as RAM, storage, and batteries, making repairs additionally difficult.[70][71]

    Obsolete features

    modem PCMCIA card on a 1990s ThinkPad. The card would normally fully insert into the socket.

    Features that certain early models of laptops used to have that are not available in more recent models include:

    Characteristics

    Advantages over desktop computers

    A teacher using a laptop as part of a workshop for school children
    A man using a laptop on a park bench
    • Portability – Laptops are highly portable compared to desktop PCs.[72] Physical portability allows a laptop to be used in many places—not only at home and the office but also during commuting and flights, in coffee shops, in lecture halls and libraries, at clients’ locations or a meeting room, etc. Within a home, portability enables laptop users to move their devices from room to room. Portability offers several distinct advantages:
    • Productivity: Using a laptop in places where a desktop PC cannot be used can help employees and students to increase their productivity on work or school tasks, such as an office worker reading their work e-mails during an hour-long commute by train, or a student doing their homework at the university coffee shop during a break between lectures, for example.
    • Up-to-date information: Using a single laptop prevents fragmentation of files across multiple PCs as the files exist in a single location and are always up-to-date.
    • Connectivity: A key advantage of laptops is that they almost always have integrated connectivity features such as Wi-Fi and Bluetooth, and sometimes connection to cellular networks either through native integration or use of a hotspot. Wi-Fi networks and laptop programs are especially widespread at university campuses.[73]

    Other advantages of laptops:

    • Size: Laptops are smaller than desktop PCs. This is beneficial when space is at a premium, for example in small apartments and student dorms. When not in use, a laptop can be closed and put away in a desk drawer.
    • Low power consumption: Laptops are several times more power-efficient than desktops. A typical laptop uses 10–100 W, compared to 200–800W for desktops. This could be particularly beneficial for large businesses, which run hundreds of personal computers thus economies of scale, and homes where there is a computer running 24/7 (such as a home media server, print server, etc.).
    • Quiet: Laptops are typically much quieter than desktops, due both to the components (often silent solid-state drives replacing hard drives) and to less heat production leading to the use of fewer, sometimes no cooling fans. The latter has given rise to laptops that have no moving parts, resulting in complete silence during use.
    • Battery: a charged laptop can continue to be used in case of a power outage and is not affected by short power interruptions and blackouts, an issue that is present with desktop PCs.
    • All-in-One: designed to be portable, most modern laptops have all components integrated into the chassis. For desktops (excluding all-in-ones) this is usually divided into the desktop “tower” (the unit with the CPU, hard drive, power supply, etc.), keyboard, mouse, display screen, and optional peripherals such as speakers.

    Disadvantages

    Compared to desktop PCs, laptops have disadvantages in the following areas:PerformanceThe performance of laptops is often worse than comparably priced desktops. The upper limits of performance of laptops remain lower than desktops, due to mostly practical reasons, such as decreased battery life, increased size and heat, etc.UpgradeabilityThe upgradeability of laptops is limited compared to tower desktops, due to technical and economic reasons. In general, hard drives and memory can be upgraded easily. Due to the integrated nature of laptops, however, the motherboard, CPU, and graphics, are seldom officially upgradeable. Some efforts towards industry standard parts and layouts have been attempted, such as Common Building Block, but the industry remains largely proprietary and fragmented. There is no industry-wide standard form factor for laptops; Moreover, starting with 2013 models, laptops have become increasingly integrated (soldered) with the motherboard for most of its components (CPU, SSD, RAM, etc.) to reduce size and upgradeability prospects.[52]Durability

    A clogged heat sink on a laptop after 2.5 years of use

    Laptops are less durable than desktops/PCs. However, the durability of the laptop depends on the user if proper maintenance is done then the laptop can work longer.

    Laptop keyboard with its keys (except the space bar) removed, revealing crumbs, pet hair, and other detritus to be cleaned away

    Because of their portability, laptops are subject to more wear and physical damage than desktops, additionally hindered by their integrated nature. A liquid spill onto the keyboard, while a minor issue with a desktop system, can damage the internals of a laptop and destroy the computer, resulting in a costly repair or entire replacement of laptops. One study found that a laptop is three times more likely to break during the first year of use than a desktop.[74] To maintain a laptop, it is recommended to clean it every three months for dirt, debris, dust, and food particles. Most cleaning kits consist of a lint-free or microfiber cloth for the screen and keyboard, compressed air for getting dust out of the cooling fan, and a cleaning solution. Harsh chemicals such as bleach should not be used to clean a laptop, as they can damage it.[75]Heating and coolingLaptops rely on extremely compact cooling systems involving a fan and heat sink that can fail from blockage caused by accumulated airborne dust and debris. Most laptops do not have any type of removable dust collection filter over the air intake for these cooling systems, resulting in a system that gradually conducts more heat and noise as the years pass. In some cases, the laptop starts to overheat even at idle load levels. This dust is usually stuck inside where the fan and heat sink meet, where it can not be removed by a casual cleaning and vacuuming. Most of the time, compressed air can dislodge the dust and debris but may not entirely remove it. After the device is turned on, the loose debris is reaccumulated into the cooling system by the fans. Complete disassembly is usually required to clean the laptop entirely. However, preventative maintenance such as regular cleaning of the heat sink via compressed air can prevent dust build-up on the heat sink. Many laptops are difficult to disassemble by the average user and contain components that are sensitive to electrostatic discharge (ESD).Battery lifeBattery life is limited because the capacity drops with time, eventually warranting replacement after as little as 2–3 years. A new battery typically stores enough energy to run the laptop for five to six hours or more, depending on usage and the battery size. The battery is often easily replaceable and a higher capacity model may be obtained for longer charging and discharging time. Some laptops do not have the usual removable battery and have to be brought to the service center of their manufacturer or a third-party laptop service center to have their battery replaced. Replacement batteries can also be expensive, depending on the availability of the parts. Desktop PCs do not face similar problems since they are reliant on long lasting power supplies.Security and privacy

    Main article: Laptop theftBecause they are valuable, commonly used, portable, and easy to hide in a backpack or other type of bag, laptops are often stolen. Every day, over 1,600 laptops go missing from U.S. airports.[76] The cost of stolen business or personal data, and of the resulting problems (identity theftcredit card fraud, breach of privacy), can be many times the value of the stolen laptop itself. Consequently, the physical protection of laptops and the safeguarding of data contained in them are both of great importance. Some laptops, primarily professional and educational devices, have a Kensington security slot, which can be used to tether them with a security cable and lock. In addition, modern operating systems have features such as Activation Lock or similar that prevents the use of the device without credentials. As of 2015, some laptops also have additional security elements added, including biometric security components such as Windows Hello or Touch ID.[77]
    Software such as GadgetTrak and Find My Mac have been engineered to help people locate and recover their stolen laptops in the event of theft. Setting one’s laptop with a password on its firmware (protection against going to firmware setup or booting), internal HDD/SSD (protection against accessing it and loading an operating system on it afterward), and every user account of the operating system are additional security measures that a user should do.[78][79] Fewer than 5% of lost or stolen laptops are recovered by the companies that own them,[80] however, that number may decrease due to a variety of companies and software solutions specializing in laptop recovery. In the 2010s, the common availability of webcams on laptops raised privacy concerns. In Robbins v. Lower Merion School District (Eastern District of Pennsylvania 2010), school-issued laptops loaded with special software enabled staff from two high schools to take secret webcam shots of students at home, via their students’ laptops.[81][82][83]

    Ergonomics and health effects

    WristsProlonged use of laptops can cause repetitive strain injury because of their small, flat keyboard and trackpad pointing devices.[84] Usage of separate, external ergonomic keyboards and pointing devices is recommended to prevent injury when working for long periods of time; they can be connected to a laptop easily by USB, Bluetooth or via a docking station. Some health standards require ergonomic keyboards at workplaces.Neck and spineA laptop’s integrated screen often requires users to lean over for a better view, which can cause neck or spinal injuries. A larger and higher-quality external screen can be connected to almost any laptop to alleviate this and to provide additional screen space for more productive work. Another solution is to use a computer stand.Possible effect on fertilityA study by State University of New York researchers found that heat generated from laptops can increase the temperature of the lap of male users when balancing the computer on their lap, potentially putting sperm count at risk. The study, which included roughly two dozen men between the ages of 21 and 35, found that the sitting position required to balance a laptop can increase scrotum temperature by as much as 2.1 °C (4 °F). However, further research is needed to determine whether this directly affects male sterility.[85] A later 2010 study of 29 males published in Fertility and Sterility found that men who kept their laptops on their laps experienced scrotal hyperthermia (overheating) in which their scrotal temperatures increased by up to 2.0 °C (4 °F). The resulting heat increase, which could not be offset by a laptop cushion, may increase male infertility.[86][87][88][89][90]

    Laptop cooler (silver) under laptop (white), preventing heating of lap and improving laptop airflow

    A common practical solution to this problem is to place the laptop on a table or desk or to use a book or pillow between the body and the laptop.[citation needed] Another solution is to obtain a cooling unit for the laptop. These are usually USB powered and consist of a hard thin plastic case housing one, two, or three cooling fans – with the entire assembly designed to sit under the laptop in question – which results in the laptop remaining cool to the touch, and greatly reduces laptop heat buildup.ThighsHeat generated from using a laptop on the lap can also cause skin discoloration on the thighs known as “toasted skin syndrome“.[91][92][93][94]

    Sales

    Manufacturers

    Major laptop brands
    Acer / Gateway / eMachines / Packard BellTravelMateExtensaFerrari and AspireEasynoteChromebook
    AppleMacBook Air and MacBook Pro
    AsusTUFROGPro and ProArt, ZenBook, VivoBook, ExpertBook
    Clevo
    DellAlienwareInspironLatitudePrecisionVostro and XPS
    Dynabook (former Toshiba): PortegeTecraSatelliteQosmioLibretto
    Falcon Northwest: DRX, TLX, I / O
    FujitsuLifebook, Celsius
    GigabyteAORUS
    HCL (India): ME LaptopME NetbookLeaptop and MiLeap
    Hewlett-PackardPavilionEnvyProBookEliteBookZBook
    HuaweiMatebook
    LenovoThinkPadThinkBookIdeaPadYogaLegion and the Essential B and G Series
    LGXnoteGram
    Medion: Akoya (OEM version of MSI Wind)
    MSI: E, C, P, G, V, A, X, U series, ModernPrestige and Wind Netbook
    PanasonicToughbook, Satellite, Let’s Note (Japan only)
    SamsungSens: N, P, Q, R and X series; ChromebookATIV Book
    TG Sambo (Korea): AveratecAveratec Buddy
    Vaio (former Sony)
    Xiaomi: Mi, Mi Gaming and Mi RedmiBook laptops
    vte

    Main article: List of laptop brands and manufacturers

    There are many laptop brands and manufacturers. Several major brands that offer notebooks in various classes are listed in the adjacent box. The major brands usually offer good service and support, including well-executed documentation and driver downloads that remain available for many years after a particular laptop model is no longer produced. Capitalizing on service, support, and brand image, laptops from major brands are more expensive than laptops from smaller brands and ODMs. Some brands specialize in a particular class of laptops, such as gaming laptops (Alienware), high-performance laptops (HP Envy), netbooks (EeePC) and laptops for children (OLPC).

    Many brands, including the major ones, do not design and do not manufacture their laptops. Instead, a small number of Original Design Manufacturers (ODMs) design new models of laptops, and the brands choose the models to be included in their lineup. In 2006, 7 major ODMs manufactured 7 of every 10 laptops in the world, with the largest one (Quanta Computer) having 30% of the world market share.[95] Therefore, identical models are available both from a major label and from a low-profile ODM in-house brand.

    Historic market share

    Further information: Market share of personal computer vendors

    As of 1992–1993, Toshiba ranked as the global leading vendor in the notebook computer market. In the United States meanwhile, Apple led the market followed by Compaq.[96] In the year 1993, global revenue for the laptop market was led by Compaq, followed by Toshiba, Apple, NEC and IBM, altogether accounting for over 53% of global revenue.[97]

    In the United States, the top three vendors for notebooks in market share as of 1996 were: Toshiba, followed by Compaq, and followed by IBM.[98]

    As of 1999, Toshiba ranked first in worldwide laptop sales followed by IBM, Compaq, and Dell.[99] Toshiba led the market with a share of 18.6%.[100]

    In the first quarter of 2002 in the United States market, Dell controlled 25.2% in the notebook space, well ahead of Toshiba (13.6%) and Compaq (11.7%), the latter of which had been acquired by Hewlett-Packard (HP). At fourth and fifth place were Sony and IBM.[101]

    In Europe, the Middle East and Africa (EMEA) territories, Acer was the largest vendor of laptops, in 2004–2005, having overtaken HP and IBM there.[102][103]

    In the year 2005 according to IDC, Dell was the top global vendor of notebooks with a market share of 17.29%, followed by: HP (15.7%), Toshiba (10.96%), Acer (10.15%) and Lenovo (8.23%); Lenovo had acquired IBM that same year. The remaining of the top ten was made up of Fujitsu Siemens, Sony, NEC, Apple and Asus.[104]

    In the first quarter of 2010, the largest vendor of portable computers, including netbooks, was either HP or Acer, depending on data source. Both had shipped approximately 9 million units each. Dell, Toshiba, Asus and Lenovo followed, each with approximate sales of 5 to 6 million each. Apple, Samsung and Sony sold under 2 million each.[105]

    As of the third quarter of 2020, HP was cited as the leading vendor for notebook computers closely followed by Lenovo, both with a share of 23.6% each. They were followed by Dell (13.7%), Apple (9.7%) and Acer (7.9%).[106]

    Adoption by users

    Battery-powered portable computers had just 2% worldwide market share in 1986.[107] However, laptops have become increasingly popular, both for business and personal use.[108] The third quarter of 2008 was the first time when worldwide notebook PC shipments exceeded desktops, with 38.6 million units versus 38.5 million units.[108][109][110][111] In 2023, it was estimated that 166 million laptops were sold,[112] and in the first quarter of 2024, around 64% of personal computers sold were laptops or detachable tablets.[113] Due to the advent of tablets and affordable laptops, many computer users now have laptops due to the convenience offered by the device.

    Price

    Before 2008, laptops were very expensive. In May 2005, the average notebook sold for $1,131 while desktops sold for an average of $696.[114] Around 2008, however, prices of laptops decreased substantially due to low-cost netbooks, drawing an average US$689 at U.S. retail stores in August 2008. Starting with the 2010s, laptops have decreased substantially in price at the low end due to inexpensive and low power Arm processors, less demanding operating systems such as ChromeOS, and SoC’s. As of 2023, a new laptop can be obtained for $299.[115]

    Disposal

    See also: E-Waste

    The list of materials that go into a laptop computer is long, and many of the substances used, such as berylliumleadchromium, and mercury compounds, are toxic or carcinogenic to humans. Although these toxins are relatively harmless when the laptop is in use, concerns that discarded laptops cause a serious health and environmental risks when improperly discarded have arisen. The Waste Electrical and Electronic Equipment Directive (WEEE Directive) in Europe specified that all laptop computers must be recycled by law. Similarly, the U.S. Environmental Protection Agency (EPA) has outlawed landfill dumping or the incinerating of discarded laptop computers.

    Most laptop computers begin the recycling process with a method known as Demanufacturing, which involves the physical separation of the components of the laptop.[116] These components are then either grouped into materials (e.g. plastic, metal and glass) for recycling or more complex items that require more advanced materials separation (e.g.) circuit boards, hard drives and batteries.

    Corporate laptop recycling can require an additional process known as data destruction. The data destruction process ensures that all information or data that has been stored on a laptop hard drive can never be retrieved again. Below is an overview of some of the data protection and environmental laws and regulations applicable for laptop recycling data destruction:

    Extreme use

    See also: International Space Station § Communications and computers

    ISS laptops in the US lab

    The ruggedized Grid Compass computer was used since the early days of the Space Shuttle program. The first commercial laptop used in space was a Macintosh portable in 1990 on Space Shuttle mission STS-41 and again in 1991 aboard STS-43.[119][120][121][122] Apple and other laptop computers continue to be flown aboard crewed spaceflights, though the only long-duration flight certified computer for the International Space Station is the ThinkPad.[123] As of 2011, over 100 ThinkPads were aboard the ISS. Laptops used aboard the International Space Station and other spaceflights are generally the same ones that can be purchased by the general public but needed modifications are made to allow them to be used safely and effectively in a weightless environment such as updating the cooling systems to function without relying on hot air rising and accommodation for the lower cabin air pressure.[124] Laptops operating in harsh usage environments and conditions, such as strong vibrations, extreme temperatures, and wet or dusty conditions differ from those used in space in that they are custom designed for the task and do not use commercial off-the-shelf hardware.